If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-7u+3=0
a = 4; b = -7; c = +3;
Δ = b2-4ac
Δ = -72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-1}{2*4}=\frac{6}{8} =3/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+1}{2*4}=\frac{8}{8} =1 $
| 9z-31=32 | | 10h-12=42 | | 12+(h+10)=42 | | 2t^2-4t+8=0 | | 8(k+1)-k-11=-9(k+3)+8 | | 10h-12= | | 5x^2-1=-2x | | 5y–13y=(5–13)y | | 41=-4p+5 | | 70-4x=80 | | 6n=30+2n-12 | | 6(x-3)=3x+15 | | 10-6x+12=2x=22-8x | | 10q-2q=-8 | | -16p-6(4-4p)=5(p-6)-15 | | 18k-9k-7k-k=20 | | 8=0.25x+6 | | 14t-12t+t-2t=7 | | -u-(5+13u)+10=-6+11)-9 | | 11x+5=-2x^2 | | (5x+3)=(x+1) | | 0.04r-0.2=1 | | -8(n+81)=64 | | 6w-4w-w=19 | | F(n)=3(n)/9 | | 42=q/5+36 | | 18t+-3t=15 | | 18000=x^2-2x+3 | | 1/2n-6=1/4n+2 | | v=4/3(3.14)(18^3) | | 5y+4y-4y-2y=15 | | 5*60=k |